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ABSTRACT

Scattering calculations using a more detailed model of the multimode laser beam in the forward-scattering

spectrometer probe (FSSP) were carried out by using a recently developed extension to Mie scattering theory.
From this model, new calibration curves for the FSSP were calculated. The difference between the old calibration

curves and the new ones is small for droplet diameters less than 10 #m, but the difference increases to approximately
10% at diameters of 50 _m. When using glass beads to calibrate the FSSP, calibration errors can be minimized,

by using glass beads of many different diameters, over the entire range of the FSSP. If the FSSP is calibrated

using one-diameter glass beads, then the new formalism is necessary to extrapolate the calibration over the
entire range.

1. Introduction

The forward-scattering spectrometer probe (FSSP)
is an optical droplet sizing instrument frequently used

to measure the diameter of cloud droplets (Dye and
Baumgardner 1984). The FSSP model 100 is manu-
factured by Particle Measuring Systems of Boulder,
Colorado, and it is calibrated at the factory to measure
water droplets from 2 to 47 #m in diameter (up to 95
#m for extended-range FSSPs). Microspheres such as
glass beads are typically used for the calibration rather
than water droplets because it is difficult to produce
monodisperse water droplets of a specified size. The

FSSP measurement is based on the power of light scat-
tered by a droplet illuminated by a focused helium-
neon laser beam. The scattered power is a function of
droplet diameter, index of refraction, laser beam wave-

length, laser beam power, and the solid angle over
which the scattered light is collected. Since glass beads
have an index of refraction that is different than water

droplets, the scattered power is different for glass beads.
When calibrating the FSSP, glass beads of one diameter
are used to simulate scattering by water droplets of
another diameter.

The relationship between glass-bead diameter and
water-droplet diameter is calculated in three steps. First,
the scattered power as a function of droplet diameter
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is calculated for water droplets using Mie scattering
theory. Next, the same calculation is made for glass
beads. These functions will be referred to as the cali-

bration curves. The relationship between glass-bead
diameter and water-droplet diameter is determined by
identifying the diameters of the water droplets that

scatter the same power as a given diameter glass bead.
The calibration curves represent a model of how glass

beads or water droplets scatter light in the FSSP. If a
more accurate model is used to describe this process,
then the calibration curves can be calculated more ac-

curately and the droplet measurement has the potential
of being more accurate as well. The purpose of this
work is to recalculate the calibration curves for the
FSSP using a more accurate model of the laser beam
in the FSSP and to determine under what circum-
stances this new model is needed. This should not be

confused with previous work done on the FSSP's elec-
tronic response to laser beam inhomogeneities (Baum-
gardner and Spowart 1990). The work by Baumgard-
ner and Spowart represents an electronic model of the

FSSP whereas this work represents an optical model.
The remainder of this paper is organized as follows.

In section 2 we describe the optical properties of the
FSSP and outline calibration procedures for the FSSP.

In section 3 we review the calibration curve equations
for the FSSP and discuss the modifications to Mie the-

ory that enabled us to improve the model. In section
4 we show data for the new calibration curves for the

FSSP and compare them with the ones traditionally
used. Finally, in section 5 we comment about the sig-
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nificance of the new calibration curves and tell under

what circumstances it is necessary to use them.

2. Optical properties of the FSSP and calibration

Before discussing calibration procedures for the FSSP
it is useful to give a brief explanation of the optical
system in the instrument. The optical system in the
FSSP consists of the following components (refer to

Fig. 1 ). The light source is a multimode helium-neon
laser. A lens focuses the beam to a waist that is typically

200 /_m in diameter (230 /_m for extended-range
FSSPs). The waist of the beam, or the region where the
beam remains focused at nearly a constant diameter,
extends for a distance of roughly 2-3 mm along the
axis of the beam. This region is the probe volume of
the instrument and it is the region of the beam that

droplets must cross in order to be measured by the
FSSP. When a droplet crosses the laser beam in the
probe volume it scatters light. A portion of the light is
collected by a lens system and then is focused onto a
detector. As the droplet begins to pass through the beam
the scattered power rapidly increases until the droplet
is fully illuminated by the beam. At some point, when
the droplet is close to the center of the beam, the scat-
tered power is at a maximum. Then as the droplet
leaves the beam, the scattering decreases to zero. The
FSSP makes the size determination when the scattered

power is at the maximum value. If a droplet traverses
a chord of the beam close to the beam's edge, then it

is possible that it will never be fully illuminated by the
beam and the droplet will scatter less light. This could
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result in a sizing error so the FSSP rejects such droplets.
Details of how the FSSP rejects these droplets are given
in Hovenac (1989) and are not pertinent here.

When calibrating any instrument it is usually best
to use a calibration standard that is as similar as possible

to the quantity that is to be measured. Since the FSSP
is designed to measure water droplets, then ideally it
should be calibrated with water droplets. However, this
is not always practical and substitute particles are often

necessary for the calibration. Glass beads, latex spheres,
pinholes, and even spores have been used by various
researchers for calibration of the FSSP (Hovenac and
Hirleman 1991; Pinnick et al. 1981 ). These materials
are useful because they can simulate scattering by a
water droplet and they are available in a variety of

specified sizes.
If monodisperse water droplets could be generated

at any given size within the range of the FSSP then
there would be no need to model the optical compo-
nents. Calibration would consist of sending droplets of
a known size through the FSSP and then adjusting the
FSSP so that the output agreed with the known input.
Although droplet generators can produce very repeat-
able, highly monodisperse droplets, they usually pro-
duce these droplets at only a few specific diameters,
over a limited range, and with a great deal of operator
difficulty.

Since detailed calibration using droplets is not prac-
tical, a limited calibration making use of a droplet gen-
erator and the water droplet calibration curve is pos-
sible. This calibration is performed by passing a stream

of droplets of a known size through the probe volume
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FIG. I. Optical configuration of the FSSP.



AUGUSTI993 HOVENAC AND LOCK 520

of the FSSP while measuring the output voltage from
the detector after it has been filtered and amplified.
This measurement relates the measured voltage to
droplet size and accounts for laser beam intensity, de-
tector efficiency, and electronic gain. Since the rela-
tionship between droplet size and voltage is nonlinear,
a theoretical calibration curve is needed to complete
the calibration over the entire range. If there are errors
in the curve then the calibration will only be correct
at the diameter droplet used in the calibration, and
sizing errors can increase at larger and smaller diam-
eters.

Since water droplets are available at only a limited
number of diameters, substitute particles can be used
to generate more points on the calibration curve. Most
popular are glass beads of a known diameter. This re-
quires calculation of a calibration curve for glass beads
as well as one for water droplets. The relationship be-
tween glass-bead diameter and water-droplet diameter
is determined by identifying the diameters of the water

droplets that scatter the same power as a given diameter
glass bead. Then for any given diameter glass bead there
exists an equivalent-size water droplet that scatters the
same amount of light. Calibration is then carried out
using sets of beads in many diameters over the range
of the instrument. If the glass beads are available at
only a few diameters then the gaps in the calibration
must be filled in using the computed calibration curve.
The accuracy of the calibration curve becomes impor-
tant if glass beads at only a few diameters are used.

3. Calibration curve equations and enhancements to

Mie theory

The equation that is used to calculate the calibration
curve for the FSSP is

l fo2"f_'['s,(o,¢')'2+ls2(o,_)12 ]Pt d) = Io -_ 2

× sin(O)dOdck, ( 1 )

where P is the power of the scattered light collected
over the angles 0o and 0, (typically 4°-14 °), d is the
diameter ofthe particle, k is 27r/X, X is the wavelength
of the unpolarized laser light (0.6328 #m), and Io is
the intensity of the incident laser beam. The angles 0
and q_ are the scattering angles from the particle as
defined by spherical coordinates. The quantifies S_ and
$2 are the complex amplitude functions that represent
the transverse electric and transverse magnetic field
polarizations (van de Hulst 1981 ). These are calculated
using the far-field Mie equations (Wiscombe 1980) and
need as input the wavelength of the laser beam, di-
ameter of the particle, and index of refraction of the
particle. In practice Eq. ( l ) is numerically integrated
and all of the constants are grouped together:

fo°'P(d) = C [IS,(O)t 2 + 1&(o)121 sin(O)dO. (2)
o

Note that the integral over 4, is also a constant and it
is grouped with the other constants as well.

The inputs to the standard Mie equations do not

contain any details about the diameter of the laser
beam, its intensity profile, or its divergence. In fact, an
assumption for standard Mie theory is that the particle
scattering the light is uniformly illuminated by a plane
wave that has an infinite extent and is of constant in-

tensity everywhere.
These rather restricting assumptions about the il-

lumination are no longer necessary because of recent
enhancements to Mie theory. In the early 1980s scat-
tering by a Gaussian beam was solved using a plane
wave expansion of the incident focused beam (Yeh et
al. 1982). This method has certain computational dif-
ficulties and as a result other solutions to the problem
were pursued. One solution made use of the Davis first-

order Gaussian beam approximation (Davis 1979).
First the problem of scattering from a spherical particle
centered in a Gaussian beam was solved (Gouesbet et

al. 1985). Later the same problem was solved using
the localized approximation, which speeded up the
calculation considerably (Grehan et al. 1986; Maheu
et al. 1987). Eventually the problem of scattering from
a spherical particle at an arbitrary position in a Gauss-
ian beam was solved; however, the calculation involved
time-consuming three-dimensional numerical integra-
tions (Gouesbet et al. 1988) or a somewhat faster two-
dimensional surface integral (Barton et at. 1988). In
1990 the localized approximation was determined for
this problem as well (Gouesbet et al. 1990), which

enabled these scattering calculations to be performed
on a microcomputer in a reasonable amount of time.
The equations using the localized approximation and
computational considerations are given in Lock
(1993).

Although the Gaussian model of a laser beam is use-
ful for a wide variety of applications, it is not appro-
priate for the FSSP because the beam in the FSSP is
multimode rather than a Gaussian shape. As shown in
Fig. 2 the intensity profile across the focal plane of an
FSSP is quite irregular. However, the principle of su-
perposition does enable us to model an irregularly
shaped laser beam like the FSSP's as a superposition
of Gaussian beams, within certain limitations. A theo-

retical limitation utilizing the Gaussian superposition
involves the width of the Gaussian beams. Since the

Gaussian beam formalism is based on the Davis model,
which is essentially a truncated Taylor series expansion,
the width of beam cannot be made arbitrarily small.
For the Davis model and a He-Ne laser wavelength,
the minimum half-width is approximately 15 _m.
There is also a practical limitation of using the Gaussian
superposition technique. The run time of the computer
code can become prohibitive if a large number of
Gaussian beams need to be superposed to create some

arbitrary beam shape. All the calculations presented in
this paper were performed on a 33-MHz 80386 micro-
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computer with a superposition of 19 Gaussian beams.
Calculation of calibration curves with droplet diameters
from 1 to 100 #m in diameter took several hours of
run time.

Knowing the general profile and diameter of the
FSSP's laser beam enabled us to simulate one with 19

Gaussian beams as shown in Fig. 3. The simulated
FSSP beam was constructed so that it had roughly the
same features as the actual beam: sharp intensity de-
crease at the edges, similar diameter, four or five in-

tensity fluctuations across the top of the beam, and the
intensity fluctuations are of a similar magnitude as in
the actual beam. The equations describing the simu-
lated beam in the probe volume are:

× exp[ (y _-Y°')2112- .,2 j j, (3)

_Oi _ 0r

yo, = O, i = 1

Xo,=Acos[(/-2)3],

yo_ = Asin[(i-2)3], 2_<i_<7

x_, = 2A cos[(i- 8)6],

yo, = 2A sin[(i-8)6], 8_< i_< 19, (4)

where n = 19 is the number of Gaussian beams, A

= 46 #m is the beam spacing, and w = 23 #m is the
Gaussian beams' half-width.

4. Modified calibration curves and PSSP response
functions

Using the equations for the Davis tint-order Gauss-
ian laser beam [Fxl. (49) from Lock for Sl and $2 sub-
stituted into Eq. (2)] and the principle of superposition
(which together will be referred to as the new Mie for-
malism), we recalculated the water-droplet and glass-
bead calibration curves and compared them with the
calibration curves calculated with standard plane-wave
Mie theory. Also as a check, we calculated the calibra-
tion curves using a single, very wide Gaussian beam
(w = 500 #m) and got excellent agreement with stan-
dardMie theory. In the limit as w --_ oo the Gaussian
beam transforms into a plane wave.

Figures 4 and 5 show the water-droplet and glass-
bead calibration curves. For these plots the index of
refraction was taken to be m = 1.333 for water and m

FIG. 2. Photograph of the FSSP laser beam

profile at the focal plane.

= 1.51 for glass. Additionally, the optical collection
angles were assumed to be 4°-14 ° and the beam di-
ameter was 230 #m with the profile shown in Fig. 3.
Also, the particle was assumed to be centered in the
laser beam.

There are several interesting features to note about
the calibration curves in Figs. 4 and 5. First, the curves
that were generated using standard Mie theory agree
quite well with the new formalism for small particles
( < 10 gm). This is because a smaller particle centered
in the FSSP beam will be uniformly illuminated, which
is one of the assumptions for standard Mie theory. Also
note in Fig. 4 (see inset) that if the instrument output
were interpreted using standard Mie theory, then a 50-
#m droplet will be incorrectly sized at 45.5 #m. Similar
errors exist for the glass-bead curve in Fig. 5 as well.
This undersizing of larger-size glass beads had been
previously commented on by Dye and Baumgardner
(1984) but they didn't account for the reason. How-
ever, it turns out that this error is compensated for
when water-droplet diameter is related to glass-bead
diameter. This can be seen in Fig. 6, which compares
the glass-bead diameter to an equivalent water-droplet
diameter. This relationship will be referred to as the
transfer function. The transfer functions in Fig. 6 were
calculated using both standard Mie theory and the new
formalism for comparison. As can be seen in the figure,
the curves are nearly indistinguishable.

One may be tempted to conclude from the similar-
ities of the two curves in Fig. 6 that the more accurate
model of the FSSP is not necessary for a more accurate

calibration. Although the relationship between glass-
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bead diameter and equivalent water-droplet diameter

(the transfer function) is linear and not sensitive to

the details of the scattering model, the relationship be-

tween water-droplet diameter and instrument response

(the calibration curve) is highly nonlinear and is de-

pendent on the details of the scattering model. It is the

calibration curve that contains the information needed

to determine the details of the FSSP's calibration such

as voltage thresholds, which determine the size bin

boundaries.

The new formalism is also useful for calculating the

FSSP response as droplets of different diameters tra-

verse the probe volume. Figures 7a--d show the scat-

tered power as a water droplet passes through the center

of the probe volume. For the case of a 10-_m water

droplet (Fig. 7a), its diameter is smaller than the os-
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cillations in the laser beam profile, and the scattered

power curve traces out the beam profile. Larger droplets
span several oscillations in the beam profile, and the
scattered power represents an average over those os-
cillations. For 100-pro droplets (Fig. 7d), all details
about the beam are lost. These plots are similar to those

given in Hovenac (1989) for different diameter pin-
holes passing through the FSSP.

The new formalism can be used to calculate FSSP

response functions. Response functions are similar to
the calibration curves except they are calculated in a
manner closer to the way the FSSP makes the size de-
termination. Scattering is calculated for a particle at a
series of 21 discrete locations in the beam as if the

particle were traversing the FSSP laser beam. The
maximum scattering is determined from the 21 cal-
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culations in the assumed particle path just as the FSSP
would determine the maximum scattering for a real
particle traversing a continuous path through the beam.
Also, four different paths or trajectories of particles
through the laser beam were assumed: l ) the particle
traversed the center of the depth of field and the radial tes
center of the beam, 2) the particle traversed a chord

to

through the beam not at the radial center but in the _
4

center of the depth of field, 3) the particle traversed _ lathe beam 1 mm from the center of the depth of field
and through the radial center, 4) the particle traversed

a chord through the beam not at the radial center and <
1 mm from the center of the depth offield. The chords, _ tea
which were assumed to be away from the radial center o
of the beam, had lengths of,r/4 beam diameters ( 181 _o

pm). This chord was chosen because it represents the _: toz
maximum distance a particle can be away from the o_
radial center of the beam and still pass the FSSP transit o_

time criterion (Baumgardner et al. 1985) and thus be
accepted for sizing.

Figure 8 shows the response functions for water
droplets going through the varied trajectories as de-
scribed above. This shows the theoretical uncertainty

of sizing water droplets in the FSSP. For example, as-
sume the FSSP is calibrated using the new calibration
curve of Fig. 4. A size bin on the FSSP that measures

Trajectory 1) = line
Trajectory 2) = open circle
Trajectory 3) = open triangle
Trajectory 4) = f;;ied square

161 i i I i I i I l I
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FIG. 8. FSSP response function for four trajectories of water

droplets through the probe volume of the FSSP.
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droplets between 44 and 47 pm corresponds to droplets

scattering light between 2.70 × 10 4 and 3.07 × 10 4

units. However, larger droplets crossing the laser beam

at other trajectories can also scatter light in this same

power range. For example, a 55-pm droplet that tra-

verses a path as defined by condition 4 above will scatter

light at 3.00 × 10 4 units, which is within the 44-47-

pm bin. It should be noted that the probability is small

for a 55-pro droplet to be sized in the 44-47-pm size

bin because of all the possible trajectories that a 55-

pm droplet can take through the probe volume; it must

take the trajectory that goes through the edge of the

depth of field and through the edge chord of the probe
volume. Similar errors can occur for smaller-diameter

droplets as well. For example, a 16-pm droplet that

traverses a path as defined by condition 4 will scatter

the same amount of light as a 1 1.7-pm droplet that

traverses a path as defined by condition 1.

Figure 9 shows the response function for glass beads.

As can be seen, glass beads are also subject to the same

sizing errors as water droplets. This effect has been

measured by Hovenac (1989) using rotating pinholes

going through random trajectories of the probe volume

and is also apparent whenever monodisperse glass

beads are blown through the FSSP during calibration.

5. Conclusions

Scattering calculations using a more detailed model

of the FSSP laser beam were carried out. From this

model, new calibration curves and response functions

were calculated for an FSSP with a laser beam 230 #m

in diameter and optical collection angles of 4°-14 ° .
The difference between calibration curves calculated

using standard Mie theory versus calibration curves

calculated using the new formalism is small for droplet

diameters less than 10 pm but the difference increases

VOLUME 10

with diameter. At droplet diameters of 50/zm the dif-
ference increases to about 10%. When using glass beads

to calibrate the FSSP, calibration errors can be mini-

mized, by using glass beads of many different diameters,

over the entire range of the FSSP. If the FSSP is cali-

brated using one-diameter glass beads, then the new

formalism is necessary to extrapolate the calibration

over the entire range.

The response of the FSSP to droplets going through

varied trajectories of the beam was also calculated. This

calculation showed that droplets as large as 55 pm can

be sized in the instrument's 44-47-pm size bin. This

effect is responsible for artificial broadening of the

measured droplet size distribution.
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